In the graduate days, worked on the quantum size effect in small metal particles of nano-size, for which the discreteness in the energy levels of conduction electrons was successfully observed in the dilution temperature region below few tens milli-Kelvin.
Since 1989, started working in the laboratory of low temperature physics in Institute for Materials Research at Tohoku University, as a research staff, where I had built three sets of NMR spectrometers, by which high-TC cuprates and organic conductors were studied. I had revealed that
the universal electronic phase diagram for high-TC cuprates holds for Tl-based cuprate.
I found the first evidence that the non-doped Tl-based cuprate is antiferromagnetism, and that
the characteristic energy of spin fluctuation in the antiferromagnetic region possibly determines TC.
In 1998, moved on to Sophia Univ. as an associate professor, where I started up the laboratory for low-temperature physics. The research area was expanded to other exotic matters such as low dimensional quantum spin magnets, and organic metals. From 2004, a new technique of muSR in collaboration with RIKEN-RAL and PSI was adopted and applied to quantum spin systems.Lectures and experiments: Statistical Physics II, Analytical Mechanics, Experimental Physics (“magnetic resonance”), Exercise for Quantum Mechanics, Physics Experiments I, Physics Experiments III, Condensed matter physics.
Current research themes are NMR study on quantum spin magnet, high-Tc cuprates and orgamic metals in low temperatures and high magnetic field.(Subject of research)
NMR and muSR study on high-Tc cuprates and low dimensional quantum spin systems.
理学博士(東京大学)
NMR, Superconductivity, magnetism